If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-20k-20=0
a = 5; b = -20; c = -20;
Δ = b2-4ac
Δ = -202-4·5·(-20)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*5}=\frac{20-20\sqrt{2}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*5}=\frac{20+20\sqrt{2}}{10} $
| -2x-16=230 | | 38=2x-8 | | 4=f/53 | | 7=w/9 | | -{10x-15}=4x+1 | | 3.6x^2=2x | | 3x=7x+27 | | w-5/6=71/4 | | 11g=196 | | 1=9-r | | 0.7x=3.79 | | 4s-27=49 | | -12=-3/2w | | 8g=87 | | -6x-13=3x-10 | | s+800=979 | | 10c=500 | | x+(x-27)+(x+33)=180 | | k-365=51 | | x-(x-27)-(x+33)=180 | | 26c=208 | | 1.5w+4.2=3.2w-2.6 | | 7x+10=2x+11 | | b+8=998 | | 5x+7(-12/5)=-1 | | f-83=862 | | -3(3x)+3x=6x+3 | | j-134=813 | | 5x^+2x-4=0 | | z+116=855 | | v-408=275 | | 6x=3x99 |